Hilbert C * – systems for Actions of the Circle Group

نویسندگان

  • H. Baumgaertel
  • A. L. Carey
چکیده

The paper contains constructions of Hilbert systems for the action of the circle group T using subgroups of implementable Bogoljubov unitaries w.r.t. Fock representations of the Fermion algebra for suitable data of the selfdual framework: H is the reference Hilbert space, Γ the conjugation and P a basis projection on H. According to a general result for Hilbert systems of this type, the group C(specZ → T ) of T -valued functions on specZ is isomorphic to the stabilizer of A. In particular, examples are presented where the center Z of the fixed point algebra A can be calculated explicitly. 1

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dilations‎, ‎models‎, ‎scattering and spectral problems of 1D discrete Hamiltonian systems

In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...

متن کامل

Dilations for $C^ast$-dynamical systems with abelian groups on Hilbert $C^ast$-modules

‎In this paper we investigate the dilations of completely positive definite representations‎ ‎of (C^ast)-dynamical systems with abelian groups on Hilbert (C^ast)-modules‎. ‎We show that if ((mathcal{A}‎, ‎G,alpha)) is a (C^ast)-dynamical system with (G) an abelian group‎, ‎then every completely positive definite covariant representation ((pi,varphi,E)) of ((mathcal{A}‎, ‎G,alpha)) on a Hilbert ...

متن کامل

Multi-Frame Vectors for Unitary Systems in Hilbert $C^{*}$-modules

In this paper, we focus on the structured multi-frame vectors in Hilbert $C^*$-modules. More precisely, it will be shown that the set of all complete multi-frame vectors for a unitary system can be parameterized by the set of all surjective operators, in the local commutant. Similar results hold for the set of all complete wandering vectors and complete multi-Riesz vectors, when the surjective ...

متن کامل

Continuous $ k $-Frames and their Dual in Hilbert Spaces

The notion of $k$-frames was recently introduced by Gu avruc ta in Hilbert  spaces to study atomic systems with respect to a bounded linear operator. A continuous frame is a family of vectors in a Hilbert space which allows reproductions of arbitrary elements by continuous super positions. In this manuscript, we construct a continuous $k$-frame, so called c$k$-frame along with an atomic system ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000